Exploring Upstream Retention and Distributed Storage

Fargo-Moorhead Area Flood Diversion Task Force Meeting November 13, 2017

Chad Engels, PE, Moore Engineering, Inc. Zach Herrmann, PE, Houston Engineering, Inc. Bruce Albright, BRRWD Administrator

RRBC LTFS – Basinwide Flow Reduction Strategy

GOAL: 20% Red River Flow Reduction

RRBC LTFS – Basinwide Flow Reduction Strategy

GOAL: 20% Red River Flow Reduction → Requires 35% (±) Tributary Peak Flow Reduction

Tributary Distributed Detention Planning

Background Information

- **RRBMI LIDAR**
- Phase 1 HEC-HMS Existing Conditions •
- Site Identification Process and Level of Detail ٠

Multiple Partners, Led by IWI

Communities of Fargo and Moorhead

Minnesota Tributary Expanded Distributed Detention Strategies

Red River Watershed Management Board (Minnesota) Funded By: **Red River Basin Commission Buffalo-Red River Watershed District**

North Dakota Tributary Comprehensive Detention Plans

Red River Joint Water Resource District (ND) Funded By: Local Water Resource Districts

North Dakota State Water Commission

IWI – Red River Basin Mapping Initiative

2008-2009

LIDAR - Light Detection and Ranging is an integration of airborne laser and global position system (GPS) technology.

The project scope included the entire U.S. portion of the RRB (including the Devils Lake Basin)

1 meter bare earth DEM

Red River Basin Mapping Initiative

HEC-HMS Subwatershed Benefits ONLY

Site Selection Criteria and Assumptions

Methodology -

• Site Identification Criteria

- Control minimum of 20 square miles
- Avoid impacts to residential structures / infrastructure
- Store a minimum of 3 inches of runoff
- Avoid mainstem locations in lower 2/3 of watershed
- Primarily select off-channel & stream locations
- Reasonable levee heights & inundation impacts
- Modeling Assumptions
 - Gated with E.S. 5 feet below top of levee
 - Dry storage, no conservation pools

Detention Site Examples – On-Channel, Off-Channel, Enhancement Options

Maple River Dam Maple River Water Resource District (North Dakota)

Controls 815 square miles 60,000(+) Ac-Ft of un-gated storage

North Ottawa Impoundment Project Bois de Sioux Watershed District (Minnesota)

Controls 75 square miles 16,000 Ac-Ft of gated storage South Embankment Fighway 26 Control Structure Morth Embankment Morth Embankment Morth Embankment Morth Embankment Min Water Control Structure

Manston Slough Restoration Buffalo-Red River Watershed District (Minnesota)

Controls 28 square miles 5,500 Ac-Ft of flood storage

Distributed Detention Planning – Level of Detail

Red River Basin Tributary Detention Planning Efforts

Moving Forward – NRCS Regional Conservation Partnership Program

Leverage \$ 12 Million in Farm Bill Funding for Watershed Planning

Halstad Upstream Retention Study

Halstad Upstream Retention Study Background

- Completed by the Red River Basin Commission
- Funded by the Fargo-Moorhead Diversion Authority

SCOPE OF STUDY

- To provide information to advance the Red River Basin Commission's Long Term Flood Solutions Report
- To provide assistance to the Fargo-Moorhead Diversion Authority on how to prioritize/allocate the approved \$25 Million in Detention Funding
- NOT to determine how upstream detention would alter current Fargo-Moorhead Metro Diversion Design

Halstad Upstream Retention Study Assumptions

• Sites Identified for Local Benefits First

- Sites Identified by Local Watershed Districts & Water Resource Districts
- Local Benefits First
- Sites Initially Empty (No Normal Pool)
- Drawdown of Gated Storage Not Considered

• All Detention Sites Built

- Full Implementation Required to Generate Reported Benefits
- Assumes full implementation

Conceptual Impoundment Locations

- No Landowner Involvement
- Ability to Implement
- No Cost Evaluations
- Limited Site Data
- Modeling based on approximate 100-year flood
 - Based on Uniform/Standardized Runoff Assumption
 - Non-uniform runoff expected during actual events
 - Drawdown of Gated Storage Not Considered
 - Wet Period Hydrology
- Modeling completed based on the existing Red River condition
 - Potential changes to FM Diversion Project not evaluated

Existing Contributing Area Controlled

HUR Proposed Condition

To Attain the RRBC LTFS Basinwide Flow Reduction Strategy

Study Scenario Resulting in a 20% Peak Flow Reduction 96 Locally Identified Sites Upstream of Halstad, MN

Watershed	Contributing Area	Contributing Area of Proposed Sites	Number of Sites Included	Total Utilized Storage*	Gated Storage*	Utilized Ungated Storage*	Event Peak Inundation Area
	Square Miles	Square Miles		Acre-Feet	Acre-Feet	Acre-Feet	Acres
Bois De Sioux	1,850	589	22	106,200	88,100	18,100	20,130
Otter Tail	1,380	44	1	6,400	2,500	3,900	1,530
Upper Red River	486	159	4	37,800	29,300	8,500	9,340
Wild Rice (ND)	2,022	345	13	75,600	64,700	10,900	17,870
Maple/Rush/Sheyenne	5,397	506	26	120,500	98,800	21,700	20,050
Buffalo	995	198	6	37,000	25,400	11,600	11,140
Elm (Red River Ungaged)	478 (255)	109	3	23,900	18,900	5,000	4,780
Wild Rice (MN)	1,616	589	17	123,700	101,000	22,700	18,340
Marsh	398	115	4	28,200	26,800	1,400	4,590
Totals	14,622	2,654	96	559,300	455,500	103,800	107,770

*Presented storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.

Red River Basin Commission - Halstad Upstream Retention Study

Standardized Melt Progression Event

Red River of the North - Halstad, MN USGS Gage No. 05064500

Storage Timing – Red River Mainstem

HUR Proposed Condition

To Attain the RRBC LTFS Basinwide Flow Reduction Strategy

Study Scenario Resulting in a 20% Peak Flow Reduction 40 Locally Identified Sites Upstream of Fargo, ND

Watershed	Contributing Area	Contributing Area of Proposed Sites	Number of Sites Included	Total Utilized Storage*	Gated Storage*	Utilized Ungated Storage*	Event Peak Inundation Area
	Square Miles	Square Miles		Acre-Feet	Acre-Feet	Acre-Feet	Acres
Bois De Sioux	1,850	589	22	106,200	88,100	18,100	20,130
Otter Tail	1,380	44	1	6,400	2,500	3,900	1,530
Upper Red River	486	159	4	37,800	29,300	8,500	9,340
Wild Rice (ND)	2,022	345	13	75,600	64,700	10,900	17,870
Totals	5,738	1,137	40	226,000	184,600	41,400	48,870

*Presented storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.

Red River Basin Commission - Halstad Upstream Retention Study

Standardized Melt Progression Event

Red River of the North - Fargo, ND USGS Gage No. 05054000

Study Scenario Resulting in a 20% Peak Flow Reduction 40 Locally Identified Sites Upstream of Fargo, ND

County	State	Number of	Total Utilized Storage*	Event Peak Inundation Area	Event Peak Inundation Area	
		Sites Included	Acre-Feet	Acres	Square Miles	
Big Stone County	MN	3	4,710	1,310	2.0	
Clay County	MN	1	4,970	2,530	4.0	
Grant County	MN	2	7,290	1,320	2.1	
Ottertail County	MN	1	2,770	390	0.6	
Stevens County	MN	2	4,530	3,120	4.9	
Traverse County	MN	7	45,950	5,870	9.2	
Wilkin County	MN	7	48,360	10,030	15.7	
MN Subtotal		23	118,580	24,570	38.4	
Cass County	ND	0	0	0	0.0	
Ransom County	ND	0	0	0	0.0	
Richland County	ND	15	93,560	22,430	35.0	
Sargent County	ND	0	0	0	0.0	
Roberts County	SD	2	13,860	1,870	2.9	
Totals		40	226,000	48,870	76.4	

*Storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.

Halstad Upstream Retention Study Summary

- Red River mainstem 20% peak flow reduction is attainable for the analyzed event
 - Differing events will result in varying levels of flow reduction benefit
 - Estimated Stage Reduction of 1.0' at Halstad, MN (1.3' at Fargo, ND)
- 96 Locally Identified Sites were used to for the proposed HUR Scenario
 - Stores a portion of runoff from 2,650 square miles
 - 560,000 Acre-Feet of Storage (455,000 Acre-Feet Gated)
 - 107,800 Acres Inundated within Storage Sites (170± Sections)
 - Conceptual Locations
- Standardized Melt Progression Event represents one scenario to produce a 100year flood at Fargo, ND
 - Based on wet period hydrology
 - Varying events may also result in a 100-year flood at Fargo, ND
 - Uniform runoff assumption for project comparison
- Provides tools necessary to evaluate specific projects for regional performance
- The HUR Study does NOT evaluate retention as an alternative to the current F-M Metro Flood Control Project

Local Implementation in the Buffalo-Red River Watershed District

RRBC LTFS in the BRRWD

Local Implementation in the Buffalo-Red River Watershed District

Project Development Considerations

• Identified Need

- Local Concerns \rightarrow Primary
- Basinwide/Mainstem Concerns → Secondary

• Technical Considerations

- Reasonable dike heights
- Efficient Storage (volume vs drainage area)
- Geotechnical Considerations
- Meaningful Storage (Storage at peak damages)

Public Support

- Receptive landowners at alternative locations
- Local demand to solve flooding issues
- Environmental Considerations
 - Multipurpose Potential (Natural Resource Enhancement)
 - Environmental concerns within the project area

Project Area

- Lateral to Wilkin County Ditch No. 13
 - Legal Ditch System in Wilkin County, MN
- South of Barnesville, MN in Mitchell, Manston, and Meadows Townships
- 27.5 square mile drainage area
- Manston Slough is a recharge point for the Buffalo Aquifer
 - Source of drinking water for Moorhead, MN

Project Background

- Original Project Proposed by DNR and Ducks Unlimited involved diking the E ½ of Section 19, Manston Twp.
- Proposed Wetland Restoration to Elevation 972 is shown in blue
- BRRWD Identified an opportunity for a larger collaborative effort between agencies for a multipurpose project

Project Features

- North Embankment
 - Includes Principal and Emergency Spillways
 - Highest Embankment is 10 feet at the Spillway
- South Embankment
 - Drainage Improvements on south side

• County Highway 26 Control Structure

• Allows for different pool levels north vs south

• County Highway 26 Improvements

- Flatten slopes in the pool area
- Township Road 203 Repairs
 - Minimum elevation of 974
 - Additional Culverts
- Fish Barrier on Baumgartner Lake

Project Benefits

Flood Damage Reduction

- 3.7" Runoff Flood Storage (5,500 Acre-Feet)
- Flood Pool set to elevation 974
- Reduce flood flow by 50-80%
- Work towards LTFS recommendations
- Reduce flows on South Branch Buffalo River

Natural Resource Enhancement

- Normal Pool/Wetland set to elevation 972
- Restore historic migratory bird stopover
 - Designed to mimic 1951 wetland levels
- Outlet structure designed for enhanced wetland management during non-flood times
- Water quality improvements
- Reduce sediment loading to the Buffalo River
- Enhance groundwater recharge
- 6,000 acres open to the public (State/Federal)

Project Financing

- Total Costs: \$ 9.3 Million
 - Construction: \$ 2.7 Million
 - Easements: \$ 5.3 Million
 - Administration: \$ 1.3 Million
- Funding Partners:
 - BRRWD (M.S.A. 103D.905, Subd. 3) / Project Assessments per Benefited Party (103D.725) (24%)
 - State of Minnesota DNR Flood Damage Reduction Grant (29%)
 - State of Minnesota Board of Water and Soil Resources – Reinvest in MN (11%)
 - Lessard-Sams Outdoor Heritage Council Conservation Legacy Partners Grant (4%)
 - Flood Damage Reduction Work Group (<1%)
 - Donated USFWS & MN DNR Land Rights
 - NRCS WRP Easement Funding (32%)

Project Timeline

- March 2002: Ducks Unlimited initiates design on a wetland project in the E1/2 of Section 19 Manston Twp.
- April 2002: BRRWD tour Manston Slough area
- April 2002: Watershed decision to pursue Larger Manston Slough Project
- May 2002: LIDAR Survey acquisition
- November 2002: LIDAR Survey results
- 2003: BRRWD Project Team Considers Project Preliminary Design
- Fall 2003: Project added to Governor's Clean Water Initiative Project List
- January 2004: Landowner meeting scheduled to discuss potential Project.
- 2004-2005: Preliminary Project Design
- 2005 Geotechnical evaluation completed
- December 2005 Preliminary Resolution Hearing
- 2007: Engineer's Report
- 2007-2009: Develop MOU and O&M with partner agencies
- 2007-2015: Landowner Easement Acquisition
- 2009-2013: MN EAW and other Permitting
- 2003-2013: Funding Search
- May 2012/April 2013: Final Hearing
- Construction 2013/2015 (Native seeding in 2015)
- 2015 and beyond: Continued Operation & Maintenance

Why do projects take so long to develop???

- The Issues
 - Landowner support/buy-in
 - Problem Identification
 - Develop range of alternatives
 - Design/study funding
 - Permitting local, state, federal
 - Cultural resources/special interests
 - Search for project funding
 - Secure land rights/easements
 - Construction
 - Monitoring/evaluation

Additional Discussion

Study Scenario Resulting in a 20% Peak Flow Reduction 40 Locally Identified Sites Upstream of Fargo, ND

County	State	Number of	Total Utilized Storage*	Gated Storage*	Utilized Ungated Storage*	Event Peak Inundation Area	Event Peak Inundation Area
		Sites included	Acre-Feet	Acre-Feet	Acre-Feet	Acres	Square Miles
Big Stone County	MN	3	4,710	3,170	1,540	1,310	2.0
Clay County	MN	1	4,970	230	4,740	2,530	4.0
Grant County	MN	2	7,290	5,280	2,010	1,320	2.1
Ottertail County	MN	1	2,770	2,390	380	390	0.6
Stevens County	MN	2	4,530	3,320	1,210	3,120	4.9
Traverse County	MN	7	45,950	39,840	6,110	5,870	9.2
Wilkin County	MN	7	48,360	39,330	9,030	10,030	15.7
MN Subtotal		23	118,580	93,560	25,020	24,570	38.4
Cass County	ND	0	0	0	0	0	0.0
Ransom County	ND	0	0	0	0	0	0.0
Richland County	ND	15	93,560	80,930	12,630	22,430	35.0
Sargent County	ND	0	0	0	0	0	0.0
Roberts County	SD	2	13,860	10,110	3,750	1,870	2.9
Totals		40	226,000	184,600	41,400	48,870	76.4

*Storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.

One Scenario Resulting in a 20% Peak Flow Reduction 40 Locally Identified Sites Upstream of Fargo, ND

County	State	Number of Sites	Total Utilized Storage*	Gated Storage*	Utilized Ungated Storage*	Event Peak Inundation Area	
		included	Acre-Feet	Acre-Feet	Acre-Feet	Acres	
Big Stone County	MN	3	4,710	3,170	1,540	1,310	
Clay County	MN	1	4,970	230	4,740	2,530	
Grant County	MN	2	7,290	5,280	2,010	1,320	
Ottertail County	MN	1	2,770	2,390	380	390	
Stevens County	MN	2	4,530	3,320	1,210	3,120	
Traverse County	MN	7	45,950	39,840	6,110	5,870	
Wilkin County	MN	7	48,360	39,330	9,030	10,030	
Cass County	ND	0	0	0	0	0	
Ransom County	ND	0	0	0	0	0	
Richland County	ND	15	93,560	80,930	12,630	22,430	
Sargent County	ND	0	0	0	0	0	
Roberts County	SD	2	13,860	10,110	3,750	1,870	
Totals		40	226,000	184,600	41,400	48,870	

*Presented storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.

One Scenario Resulting in a 20% Peak Flow Reduction 40 Locally Identified Sites Upstream of Fargo, ND

County	State	Pre-1997 Sites	Post 1997 Sites	Number of Sites Included	Total Utilized Storage*	Gated Storage*	Utilized Ungated Storage*	Event Peak Inundation Area
			Unico		Acre-Feet	Acre-Feet	Acre-Feet	Acres
Big Stone County	MN	0	0	3	4,710	3,170	1,540	1,310
Clay County	MN	0	0	1	4,970	230	4,740	2,530
Grant County	MN	0	1	2	7,290	5,280	2,010	1,320
Ottertail County	MN	0	0	1	2,770	2,390	380	390
Stevens County	MN	0	0	2	4,530	3,320	1,210	3,120
Traverse County	MN	1	0	7	45,950	39,840	6,110	5,870
Wilkin County	MN	0	0	7	48,360	39,330	9,030	10,030
Cass County	ND	0	0	0	0	0	0	0
Ransom County	ND	0	0	0	0	0	0	0
Richland County	ND	0	0	15	93,560	80,930	12,630	22,430
Sargent County	ND	3	0	0	0	0	0	0
Roberts County	SD	0	0	2	13,860	10,110	3,750	1,870
Totals		4	1	40	226,000	184,600	41,400	48,870

*Presented storage volumes correlate to runoff volume detained during the analyzed 4-day Initial Melt Progression Event.